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Direct methods of linear algebraic systems solving methods give an exact solution in a definite number of operations. These methods 
are stable. However, they consume a large memory space for storage. Mesh and graph renumbering methods can accelerate accurately 
these methods and reducing memory storage. The fastest of these direct methods is the Cholesky method for envelope storage. It has 
the drawback of being applied only for symmetrical positive definite matrix systems, which represents an obstacle for coupled circuits 
(electric - magnetic). In this paper, we present a new solution technique faster and more general than the Cholesky method. The 
methods allow a significant reduction of CPU time consuming which is very suitable in time stepping finite element large problems. 
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I. INTRODUCTION 

INITE element method is today one of the most popular 
numerical methods for solving partial differential 

equations. Since the seventies, it is applied to compute 
electromagnetic devices behavior. It consists of transforming a 
continuous differential equation to an algebraic system of 
equations. The obtained stiffness matrix is generally an 
extremely sparse symmetric matrix [1]. Direct and iterative 
methods can be used for solving such systems. Direct methods 
provide an exact solution using a finite number of operations 
without difficulties of convergence which are encountered 
with iterative methods. The most widely used direct methods 
are variants of Gaussian elimination and involve the explicit 
factorization of the system matrix A (or, more usually, a 
permutation of A) into a product of lower and upper triangular 
matrices. Moreover, finding and computing a good 
preconditioner for use with an iterative method can be 
computationally more expensive than using a direct 
method [2].  

These properties are advantageous when using time 
stepping methods with direct methods. We can remove 
cumulative errors due to the iterative process. However, direct 
methods require large memory resources and consume a large 
CPU time. Some renumbering methods are developed for 
reducing bandwidth and/or envelope. Storage is then reduced, 
and number of operations is also reduced [1, 3]. 
 Cholesky and frontal methods (based on Gauss elimination 
method) are preferred for solving these obtained algebraic 
systems. For coupled circuits, the stiffness matrix is 
completed, and the system is not definite positive [4].  
 In this paper, the authors propose a novel and original 
method to solve a symmetric algebraic system, in its square 
form, faster than gauss and Cholesky in its first form. 

II. PRINCIPLE OF THE PROPOSED METHOD 

Let A be an N by N symmetric matrix, with aij entries. To 
solve the following algebraic system: 

  A x = b                  (1) 
Some authors propose to transform the system in an 

equivalent system with a triangular matrix (Like Gauss), a 

product of two triangular matrices (Cholesky…) or diagonal 
matrix (Jordan…)…etc. We can note that the matrix A is a 
definite positive matrix. The proposed method transforms A in 
triangular matrix with an unity diagonal.  

 A’x = b’                 (2) 
 If we consider that the matrix A' is a sum of three 

matrices: a strictly upper (U), a strictly lower (L) and a 
diagonal matrix (D), we wrote: 

A’ = (L) + (D) + (U)              (3) 
 The presented method considers: 

(L) = 0                   (4) 
(D) = (I) matrix unity             (5) 

 Like many methods, the presented method has two steps:  
- Factorization 
- Resolution 

Factorization needs about the same number of operations as 
Cholesky factorization.  

For the resolution, equation (2) is written as: 
 x = – (U) x + b’               (6) 

This consists in a product upper matrix- vector and a sum 
with a vector. 

We consider, for example, this system:  
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It is transformed to the following form: 
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If we change the second member (b) the (U) matrix does not 
change. 
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and its solution is: 
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This means that in a PDE problems (electromagnetic, 

thermal, or coupled ...) with time varying sources (second term 
b), the factorization of the stiffness matrix is performed once 
unlike Gaussian elimination methods. This is suitable for CPU 
time saving for large systems in Time stepping Finite element 
method. 

This method has three excellent advantages: 
- It is applicable for general symmetric systems; 
- It has the same number of operations for factorization as 

Cholesky’ method; 
- For a repetitive computations (for example, in a stepping 

method with fixed mesh), stiffness matrix A is 
determined only at first step.    

III. APPLICATION 

For application, we want to compare performances with 
Gauss and Cholesky methods. We consider a heat flow 
problem in Totally Enclosed Fan Cooled ’’TEFC’’ induction 
machine (2,2 kW). Equation to solve is : 
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where  
 

is the thermal diffusivity an P is the heat source.

 

 
Only a part of structure is studied (Fig.1). 

IV. NUMERICAL RESULTS 

We consider the stiffness matrix is stored in square matrix, 
and the Poisson’s equation is solved with three methods: The 
proposed method, and, for comparison, the elimination Gauss 
method and Cholesky method. 

Table. I, shows the total CPU time with the 3 methods for 
different values of mesh node number.  It can be seen that the 
proposed method is almost 20% faster than Cholesky method. 

In order to accelerate the resolution, a renumbering method 
that reduces the bandwidth is applied [3]. The matrix is also 
stored in square form, but algorithms are modified to take into 
account the reduced bandwidth. Results are given in Tab. II. 

 
In this case, It can be seen that the proposed method has the 

same speed as Gauss method. The two methods are faster than 
Cholesky Method. However for with Gauss elimination 
method the matrix is transformed at each time step which is 
not the case of the proposed method.  

 

 

 
Fig. 1.Studied Induction machine in heat flow problem with finite elements 
method. 
 

TABLE I 
CPU TIMES IN SECONDS FOR DIFFERENT SYSTEM SIZES FOR THE 3 METHODS 

N (nodes) Gauss Cholesky 
Proposed 
Method 

991 11.69 6.94 5.64 
1160 20.14 11.79 9.65 
2119 132.1 78.04 63.34 
2618 251.1 151.1 120.4 

 
TABLE II 

CPU TIME IN SECONDS FOR DIFFERENT SYSTEM SIZES FOR THE 3 METHODS 

WHILE CONSIDERING MINIMIZING MAXIMUM BANDWIDTH 

Nodes Bandwidth Gauss 
Proposed 
Method 

1160 71 0.19 0.18 
2119 115 0.88 0.88 
2618 119 1.18 1.19 
3655 127 1.94 1.93 

 
For a complete comparison, we need to apply a profile 

reduction and improve algorithms for this storage.  

V. CONCLUSION 

The authors have presented a novel and original method to 
solve the algebraic linear system. This method presents many 
advantages. It is, in its form, faster than Cholesky method.  

It is applied for all symmetric systems  and not limited for 
definite positive systems, like Cholesky. It is suitable for  
coupled FEM-circuits problems 

The matrix A is calculated only at the first step when b 
varies. The proposed method is  suitable for time stepping 
methods. The second member of equation is simple to 
calculate from the modified matrix A’  

In bandwidth reduction, the proposed method is also faster 
than Cholesky method. It has similar performances than Gauss 
method. We can see then that the proposed method is very 
suitable for coupled circuits and step by step finite elements 
analysis 
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